07 现在的位置:首页 > 期刊导读 > 2018 > 07 >

代数几何相转化 相映成辉是一家——对一道高考圆锥曲线问题的变式探究

【作者】 范方兵 [1] 王芝平 [2]

摘要】试题再现:已知抛物线C:y2=2px经过点P(1,2).过点Q(0,1)的直线l与抛物线C有两个不同的交点A,B,且直线PA交y轴于M,直线PB交y轴于N.(Ⅰ)求直线l的斜率的取值范围;(Ⅱ)设O为原点→QM=λ→QO,→QN=μ→QO,求证:1/λ+1/μ为定值.这是2018年高考北京卷理科的第19题,在全卷中处于倒数第二题的位置,题目设计新颖,背景深刻,难度适中,以抛物线为载体考查直线与圆锥曲线的位置关系,考查解析几何的坐标化思想、数形结合、化归转化思想以及数学运算、逻辑推理等核心素养,是一道值得细细品味的好题.现将本题的解答及分析过程整理如下,希望得到同行的指教.

上一篇: 基于抛物线的一条性质的类比推广
下一篇: 深入才能浅出:一类求参数取值范围试题的解析

版权所有: 《数学通报》编辑部  京ICP备05010140号
地址:北京师范大学《数学通报》编辑部  邮 编:100875